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The Dirac-Oscillator Green’s Function

A. D. Alhaidari1

We obtain the two-point Green’s function for the relativistic Dirac oscillator problem.
This is accomplished by setting up the relativistic problem in such a way that makes
comparison with the nonrelativistic problem highly transparent and results in a map
of the latter into the former. The relativistic bound states energy spectrum is obtained
by locating the energy poles of this Green’s function in a simple and straightforward
manner.
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1. INTRODUCTION

Recently, an effective approach has been developed for solving the Dirac
equation for spherically symmetric local interactions. It was applied successfully
to the solution of various relativistic problems (Alhaidari, 2001a,b; Alhaidari,
2002a,b; Alhaidari, 2003; Guo, Fang, and Xu, 2002; Guo, Meng, and Xu, 2003).
These included, but not limited to, the Dirac–Coulomb, Dirac–Morse, Dirac–Scarf,
Dirac–Pöschl-Teller, Dirac–Woods-Saxon, etc. The central idea in the approach is
to separate the variables such that the two coupled first-order differential equations
resulting from the radial Dirac equation generate Schrödinger-like equations for
the two spinor components. This makes the solution of the relativistic problem
easily attainable by simple and direct correspondence with well-known exactly
solvable nonrelativistic problems. The correspondence results in a parameter map
that relates the relativistic to the nonrelativistic problem. Using this map and the
known solutions (energy spectrum and wavefunctions) of the nonrelativistic prob-
lem, one can easily and directly obtain the relativistic spectrum and spinor wave-
functions. The main objective in all previous applications of the approach was in
obtaining the relativistic energy spectrum and the spinor wavefunctions (Alhaidari,
2001a,b; Alhaidari, 2002a; Guo, Fang, and Xu, 2002). In this article, however, we
demonstrate how one can utilize the same approach in generating the two-point
Green’s function—an important object of prime significance to the calculation of
relativistic physical processes. The main finding here is in obtaining the relativistic
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Green’s function for the Dirac-Oscillator which, to the best of our knowledge, has
not been calculated before. We start by setting up the relativistic problem then
calculating the particle propagator in the Dirac oscillator potential.

Dirac equation is a relativistically covariant first-order differential equation
in four-dimensional space-time for a four-component wavefunction (“spinor”)
ψ . For a free structureless particle it reads (i hγ µ∂µ − mc)ψ = 0, where m is
the rest mass of the particle and c the speed of light. The summation conven-
tion over repeated indices is used. That is, γ µ∂µ ≡ ∑3

µ=0 γ µ∂µ = γ 0∂0 + �γ .�∂ =
γ 0 ∂

c∂t + �γ . �∇.{γ µ}3
µ=0 are four constant square matrices satisfying the anticom-

mutation relation {γ µ, γ v} = γ µγ v + γ vγ µ = 2ξµv , where ξ is the metric of
Minkowski space-time which is equal to diag(+, −, −, −). A four-dimensional
matrix representation that satisfies this relation is as follows:

γ 0 =
(

I 0

0 −I

)
, �γ =

(
0 �σ

−�σ 0

)
(1)

where I is the 2 × 2 unit matrix and �σ are the three 2 × 2 hermitian Pauli matrices.
In the atomic units h = m = 1, the Compton wavelength λ- = h/mc = 1/c and
the Dirac equation reads (iγ µ∂µ − λ-−1)ψ = 0. Next, we let the Dirac spinor be
coupled to the four component potential Aµ = (A0, �A). Gauge invariant coupling,
which is accomplished by the “minimal” substitution ∂µ → ∂µ + i Aµ, transforms
the free Dirac equation above to [iγ µ(∂µ + i Aµ) − λ-−1]ψ = 0 which, when writ-
ten in details, reads as follows

iλ-
∂

∂t
ψ = (−i �α · �∇ + �α · �A + A0 + λ-−1β)ψ (2)

where �α and β are the hermitian matrices

�α = γ 0 �γ =
(

0 �σ
�σ 0

)
and β = γ 0 =

(
I 0
0 −I

)
(3)

For time-independent potentials, Eq. (2) gives the following matrix representation
of the Dirac Hamiltonian (in units of mc2 = λ-−2)

H =
(

1 + λ- A0 −λ-i �σ · �∇ + λ- �σ · �A
−λ-i �σ · �∇ + λ- �σ · �A −1 + λ- A0

)
(4)

Thus the eigenvalue wave equation reads (H − ε)ψ = 0, where ε is the relativistic
energy which is real and measured in units of mc2.

Now, the space component �A of the four-potential could be eliminated by
the usual gauge transformation Aµ → Aµ + ∂µη, ψ → e−iλ-ηψ , where η(�r ) is
a real scalar function. Consequently, the contribution of the off-diagonal term
λ- �σ · �A could be eliminated (“gauged away”) when the Dirac particle is cou-
pled minimally to the potential (A0, �A). However, in our approach the spinor
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is coupled in a nonminimal way to the four-potential (A0, �A). This is accom-
plished by replacing the two off-diagonal terms �σ · �A in the above Hamiltonian
(4) by ±i �σ · �A, respectively. That is, the Hamiltonian (4) is replaced by the
following

H =
(

1 + λ- A0 −iλ- �σ · �∇ + iλ- �σ · �A
−iλ- �σ · �∇ − iλ- �σ · �A −1 + λ- A0

)
(5)

It should be noted that this type of coupling does not support an interpretation
of (A0, �A) as the electromagnetic potential unless, of course, �A = 0 (e.g., the
Coulomb potential). Likewise, H does not have local gauge symmetry. That is, the
associated wave equation is not invariant under the electromagnetic guage trns-
formation mentioned above. The hermitian (real) Lagrangian that gives the guage
invariant Dirac Eq. (2) with minimal coupling to the electromagnetic potential
Aµ is

∫ (
i

2
ψ̄ � ∂↔ψ − λ-−1ψ̄ψ − ψ̄ �Aψ

)
d4x (6)

where �C ≡ γ µCµ = ( C0 �σ . �C
−�σ . �C −C0

)
and � ∂↔ = γ µ(�∂µ − ←←

∂µ). On the other hand, the
Dirac equation with nonminimal coupling to the potential Aµ is obtained from the
real Lagrangian

∫ (
i

2
ψ̄ � ∂↔ψ − λ-−1ψ̄ψ − ψ̄❡Aψ

)
d4x (7)

where ❡C ≡ γ 0C0 + i �α · �C = ( C0 i �σ . �C
i �σ . �C −C0

)
. It is to be noted that relativistic in-

variance of the term ψ̄ �Aψ in (6) dictates that the electromagnetic potential Aµ

transforms like a four-vector. That is A′
µ = �v

µ Av , where � is the six-parameter
4 × 4 Lorentz transformation matrix satisfying �� ξ� = ξ . On the other hand,
relativistic invariance of the term ψ̄❡Aψ in (7) gives the transformation property of
the four-potential Aµ, which does not transform like a four-vector.

Now, we choose a referece frame where A0 = 0 and impose spherical sym-
metry by taking �A = r̂ W (r ), where r̂ is the radial unit vector and W (r ) is a real
radial potential function. In this case, the angular variables could be separated and
we can write the spinor wavefunction as (Bjorkan and Drell, 1965)

ψ =
(

i[φ+(r )
/

r ]χ j
�m

[φ−(r )/r ]�σ · r̂χ
j
�m

)
(8)
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where φ± are real radial functions and the angular wavefunction for the two-
component spinor is written as

χ
j
�m(r̂ ) = 1√

2� + 1

( √
� ± m + 1/2 Y m−1/2

�

±√
� ∓ m + 1/2 Y m+1/2

�

)
, for j = � ± 1

2
(9)

Y m±1/2
� is the spherical harmonic function and m = − j, − j + 1, . . . , j . Spherical

symmetry gives i �σ · (�r × �∇)ψ(r, r̂ ) = −(1 + κ)ψ(r, r̂ ), where κ is the spin-orbit
quantum number defined as κ = ±( j + 1

2 ) = ±1, ±2, . . . for � = j ± 1/2. Using
this we obtain the following useful relations

(�σ · �∇)(�σ · r̂ )F(r )χ j
�m =

(
d F

dr
+ 1 − κ

r
F

)
χ i

�m

(10)
(�σ · �∇)F(r )χ j

�m =
(

d F

dr
+ 1 + κ

r
F

)
(�σ · r̂ )χ j

�m

Employing these in the wave equation (H − ε)ψ = 0 results in the following 2 × 2
matrix equation for the two radial spinor components(

1 − ε λ-
[

κ
r + W (r ) − d

dr

]
λ-
[

κ
r + W (r ) + d

dr

] −1 − ε

) (
φ+(r )

φ−(r )

)
= 0 (11)

This gives the following equation for one spinor component in terms of the other

φ∓(r ) = λ-

ε ± 1

[
κ

r
+ W (r ) ± d

dr

]
φ±(r ) (12)

On the other hand, the resulting Schrödinger-like wave equation for the two spinor
components reads[

− d2

dr2
+ κ(κ ± 1)

r2
+ W 2 + 2κ

W

r
∓ dW

dr
− ε2 − 1

λ-2

]
φ± = 0 (13)

The objective of adding a potential, which is linear in the coordinate, to
the Dirac equation in an analogy to the kinetic energy term which is linear in the
momentum lead Moshinsky and Szczepaniak to the solution of the Dirac oscillator
problem (Moshinsky and Szczepaniak, 1989). The nonrelativistic limit reproduces
the usual Harmonic oscillator. The linear potential had to be added to the odd part
of the Dirac operator resulting in a potential coupling which is a special case of
that given in the Hamiltonian of Eq. (5) above. Subsequently, the Dirac oscillator
attracted a lot of attention in the literature (Bentez et al., 1990; de Lange, 1991;
Villalba, 1994; Rozmej and Arvieu, 1999; Szmytkowski and Gruchowski, 2001).
Our contribution here is to find its two-point Green’s function using the tools of
the approach mentioned above. In this setting, the Dirac oscillator is the system
described by Eq. (11) with W (r ) = ω2r , where ω is the oscillator frequency.
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2. DIRAC-OSCILLATOR GREEN’S FUNCTION

The relativistic 4 × 4 two-point Green’s function G(�r , �r ′, ε) satisfies the in-
homogeneous matrix wave equation (H − ε)G = −λ-2δ(�r − �r ′), where the energy
ε does not belong to the spectrum of H . For problems with spherical symmetry,
the 2 × 2 radial component Gκ (r, r ′, ε) of G satisfies (Hκ − ε)Gκ = −λ-2δ(r − r ′),
where Hκ is the radial Hamiltonian operator in Eq. (11). It should be noted that
our definition of the radial component of the Green’s function differs by a factor
of (rr ′)−1 from other typical definitions. We write Gκ as

Gκ (r, r ′, ε) =
(

G++
κ G+−

κ

G−+
κ G−−

κ

)
(14)

where Gκ (r, r ′, ε)† = Gκ (r ′, r, ε). The equations satisfied by the elements of Gκ

are obtained from (Hκ − ε)Gκ = −λ-2δ(r − r ′). They parallel Eq. (12) and Eq. (13)
for φ± and read as follows:[

− d2

dr2
+ κ(κ ± 1)

r2
+ ω4r2 + ω2(2κ ∓ 1) − ε2 − 1

λ-

]

× G±±
κ (r, r ′, ε) = −(1 ± ε)δ(r − r ′) (15)

G∓±
κ (r, r ′, ε) = λ-

ε ± 1

[
κ

r
+ ω2r ± d

dr

]
G±±

κ (r, r ′, ε) (16)

We compare Eq. (15) to that of the nonrelativistic radial Green’s function g�(r, r ′,
E) for the three-dimensional isotropic oscillator:[

− d2

dr2
+ �(� + 1)

r2
+ ω4r2 − 2E

]
g�(r, r ′, E) = −2δ(r − r ′) (17)

where � is the angular momentum quantum number and E is the nonrelativistic
energy. The comparison gives the following two maps between the relativistic and
nonrelativistic problems. The map concerning G++

κ is

g� → 2G++
κ

/
(1 + ε), � →

{
κ, κ > 0,

−κ − 1, κ < 0
,

E → (ε2 − 1)/2λ-2 − ω2(κ − 1/2) (18)

The choice � → κ or � → −κ − 1 depends on whether κ > 0 or κ < 0, respec-
tively. On the other hand, the map for G−−

κ is as follows:

g� → 2G−−
κ

/
(1 − ε), � →

{
κ − 1, κ > 0

−κ, κ < 0
, (19)

E → (ε2 − 1)/2λ-2 − ω2(κ + 1/2)
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Similarly, the choice � → κ − 1 or � → −κ depends on whether κ is positive or
negative, respectively. Now, the nonrelativistic radial Green’s function for the har-
monic oscillator is well known (Bellandi, Filho, and Caetano Neto, 1975; Capelas
De Oliveira, 1979; Macek, Ovchinnikov, and Khrebtukov, 2000). It could be writ-
ten as

g�(r, r ′, E) = �
(

2�+3
4 − E/2ω2

)
ω2�(� + 3/2)

1√
rr ′ ME/2ω2, 2�+1

4
(ω2r2

< )WE/2ω2, 2�+1
4

(ω2r2
> )

(20)

where � is the gamma function, Ma,b and Wa,b are the Whittaker functions of
the first and second kind, respectively (Magnus, Oberhettinger, and Soni, 1996;
Buchholz, 1969; Gradshtein, and Ryzhik, 1980; Bateman and Erdélyi, 1953).
r< (r> ) is the smaller (larger) of r and r ′. The two mappings (18) and (19) transform
this nonrelativistic Green’s function into the following solutions of
Eq. (15):

G++
κ = 1 + ε

2ω2

1√
rr ′

×




�(−µ + 2v)

�(2v + 1)
Mµ−v+ 1

2 ,v (ω2r2
< )Wµ−v+ 1

2 ,v (ω2r2
> ), κ > 0

�(−µ)

�(−2v + 1)
Mµ−v+ 1

2 ,−v (ω2r2
< )Wµ−v+ 1

2 ,−v (ω2r2
> ), κ < 0

(21)

G−−
κ = 1 − ε

2ω2

1√
rr ′

×




�(−µ + 2v)

�(2v)
Mµ−v ,v− 1

2 , (ω
2r2

< )Wµ−v ,v− 1
2
(ω2r2

> ), κ > 0

�(−µ + 1)

�(−2v + 2)
Mµ−v ,−v+ 1

2
(ω2r2

< )Wµ−v ,−v+ 1
2
(ω2r2

> ), κ < 0
(22)

where µ = (ε2 − 1)/4λ-2ω2 and v = (κ + 1
2 )/2. The off-diagonal elements of Gκ

are obtained by substituting these in Eq. (16), which could be rewritten
as

G∓±
κ (r, r ′, ε) = λ-

ε ± 1

1√
rr ′

[
κ ∓ 1

2

r
+ ω2r ± d

dr

] √
rr ′G±±

κ (r, r ′, ε) (23)

Using the differential properties of the Whittaker functions (Magnus, Oberhettinger,
and Soni, 1996; Buchholz, 1969; Gradshtein and Ryzhik, 1980; Bateman and
Erdélyi, 1953) we obtain relations (A1) and (A2) in the Appendix, which when
used in Eq. (23) give
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G−+
κ (r, r ′, ε) = G+−

κ (r ′, r, ε) = �(−µ + 2v)

�(2v)

λ-/ω√
rr ′

× [
θ (r ′ − r )Mµ−v ,v−1/2(ω2r2)Wµ−v+1/2,v (ω2r ′2)

+ µ

2v
θ (r − r ′)Mµ−v+1/2,v (ω2r ′2)Wµ−v ,v−1/2(ω2r2)

]
, κ > 0 (24a)

G−+
κ (r, r ′, ε) = G+−

κ (r ′, r, ε) = �(−µ + 1)

�(−2v + 2)

λ-/ω√
rr ′

[
θ (r ′ − r )Mµ−v ,−v+1/2(ω2r2)

× Wµ−v+1/2,−v (ω2r ′2) + (2v − 1)θ (r − r ′)

× Mµ−v+1/2,−v (ω2r ′2)Wµ−v ,−v+1/2(ω2r2)
]

, κ < 0 (24b)

It is worth noting (although might be obvious) that in the nonrelativistic limit
(λ- → 0, ε → 1 + λ-2 E) the off-diagonal elements go to the limit like λ-, whereas
the lower diagonal element G−−

κ goes like λ-2.
Finally, one can easily verify that the relativistic bound states energy spectrum

of the Dirac oscillator (Moshinsky and Szczepaniak, 1989; Alhaidari, 2003) is
located at the energy poles of these components of the Green’s function. It is
simply obtained by taking the argument of the gamma function in the numerator to
be equal to −n, where n = 0, 1, 2 . . . That is by taking −µ + 2v = −n for κ > 0
and −µ = −n for κ < 0 giving:

εn =
{±

√
1 + 4λ-2ω2 (n + κ + 1/2), κ > 0

±
√

1 + 4λ-2ω2n, κ < 0
(25)

APPENDIX

The following are some useful relations which could be obtained by using
the differential formulas and recurrence relations of the Whittaker functions:(

d

dx
+ 2b − 1

x
± x

)
Ma,b(x2) = 4bMa∓1/2,b−1/2(x2)

(
d

dx
− 2b + 1

x
± x

)
Ma,b(x2) =

(
±1 − a

b + 1/2

)
Ma∓1/2,b+1/2(x2)

(A.1)(
d

dx
− 1 ± 2b

x
+ x

)
Wa,b(x2) = 2 (a ∓ b − 1/2) Wa−1/2,b±1/2(x2)

(
d

dx
− 1 ± 2b

x
− x

)
Wa,b(x2) = −2Wa+1/2,b±1/2(x2) (A.2)

(
d

dx
+ b − 1/2

x
− a

2b − 1

)
Ma,b(x) = 2bMa,b−1(x)
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(
d

dx
− b + 1/2

x
+ a

2b + 1

)
Ma,b(x) = 1/8

b + 1

[
1 −

(
a

b + 1/2

)2
]

Ma,b+1(x)

(A.3)(
d

dx
+ b − 1/2

x
− a

2b − 1

)
Wa,b(x) = −1

2

(
1 + a

b − 1/2

)
Wa,b−1(x)

(
d

dx
− b + 1/2

x
+ a

2b + 1

)
Wa,b(x) = 1

2

(
−1 + a

b + 1/2

)
Wa,b+1(x) (A.4)
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